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We investigate two- and three-dimensional shell-structured-inflatable froths, which can be constructed by a
recursion procedure adding successive layers of cells around a germ cell. We prove that any froth can be
reduced into a system of concentric shells. There is only a restricted set of local configurations for which the
recursive inflation transformation is not applicable. These configurations are inclusions between successive
layers and can be treated as vertices and edges decorations of a shell-structured-inflatable skeleton. The
recursion procedure is described by a logistic map, which provides a natural classification into Euclidean,
hyperbolic, and elliptic froths. Froths tiling manifolds with different curvatures can be classified simply by
distinguishing between those with a bounded or unbounded number of elements per shell, without anya priori
knowledge on their curvature. A result, associated with maximal orientational entropy, is obtained on topo-
logical properties of natural cellular systems. The topological characteristics of all experimentally known
tetrahedrally close-packed structures are retrieved.

PACS number~s!: 82.40.Ck, 82.70.Rr

I. INTRODUCTION

A froth is a ~topologically stable! division of space by
cells, which are convex polytopes@polygons in two-
dimensions~2D!, polyhedra in three dimensions~3D!# of
various shapes and sizes. These geometrical systems have
attracted much attention in recent years, both theoretically
and experimentally@1,2#. The aim in this work is to study a
specific class of froths, namely, those which are reducible to
a set of concentric shells. These particular froths are struc-
tured as if constructed in the following way. In the first stage,
cells are added to a germ cell, forming a first layer around it
whose external surface constitutes the second shell. In the
second stage, cells are added to the first shell so as to form a
second layer of cells encircling the first one, and so on. We
emphasize that the words ‘‘germ’’ and ‘‘stage’’ are purely
pictorial and do not imply any particular mode of growth
since any cell of a generic shell-structured froth may play the
role of its germ cell. Such a froth is called shell-structured
inflatable from now on.

A definition of a shell-structured-inflatable froth requires
the notion of a topological distance between cells. The topo-
logical distancet between two cellsA andB is defined as the
smallest number of edges crossed by a path connectingA
and B. The germ cell is therefore at the distancet50. A
shell (t) is defined as the interface between two sets of cells
distant byt and t11 from the germ cell. A 2D froth is a
shell-structured inflatablefroth if it satisfies the following
two conditions:

~1! For any set of cells, equidistant to the germ cell, there
exists a closed non-self-intersecting path which goes only
through these cells and connects all of them.

~2! Any cell at distancet from the germ cell is the neigh-
bor of at least one cell at the distancet11.

Two consecutive shells (t) and (t11) of a shell-

structured-inflatable froth are connected through a set of dis-
joint edges with one vertex on shell (t) and the other on shell
(t11). These two shells are closed loops of edges delimiting
the layer (t11) of cells which are at the distancet11 from
the germ cell. Shell (t) divides the froth into an internal
froth, constituted of cells at distancesr<t, and an external
froth, with cells at distancesr.t. The extension to 3D shell-
structured-inflatable froths is straightforward and is given in
Appendix B 2.

In this paper we prove that the 2D and 3D shell-
structured-inflatable froths are constructed according to a re-
cursion procedure which is the logistic map@3#, well known
in the theory of dynamical systems. The logistic map pro-
vides a natural classification of these froths according to the
behavior of the number of edges per shell as the topological
distancet increases.

Any given froth is not necessarily shell-structured inflat-
able. However, it has to be noted that a froth can always be
decomposed into shells with respect to an arbitrarily chosen
germ cell. In this decomposition, each cell of the layer (t)
belongs to one of two categories. The cells of the first cat-
egory, individually, have neighbors in both layers (t21) and
(t11) and, collectively, are building up a complete ring
around the chosen germ cell. The set of all these rings con-
stitutes the ‘‘skeleton’’ of the shell structure. The cells of the
second category have neighbors in only one of the two layers
(t21) or (t11). These cells can be considered as local
topological defects included between the rings of the ‘‘skel-
eton’’ of the shell structure. The ‘‘skeleton’’ is itself a space-
filling froth which is shell-structured inflatable. The recur-
sion procedure that we are studying applies to such a
structure.

The plan of this paper is the following. In Sec. II, we
derive the recursion procedure associated with 2D shell-
structured-inflatable froths and show that it can be written as
the logistic map. The resulting classification into Euclidean,
hyperbolic, and elliptic froths is discussed. In Sec. III, it is
shown that the recursion procedure in 3D is again described*On leave from C.I.I.M., Universita´ di Genova, Genova, Italy.
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by a logistic map. The curvature of the embedding space is
classified as for the 2D froths. Section IV gives examples of
space-filling cellular structures which fit into the classifica-
tion of 3D shell-structured-inflatable froths provided by the
logistic map. In Sec. V, a bound on topological properties of
natural cellular structures is obtained. The topological prop-
erties of all experimentally known tetrahedrally close-packed
~t.c.p.! structures are retrieved under the hypothesis of shell
reducibility. A conclusion emphasizes the main results of the
paper. In Appendix A, the recursion procedure is generalized
to 2D shell-structured-inflatable networks with a vertex co-
ordination larger than three. Local topological defects in 2D
and 3D shell-reducible but not inflatable froths are consid-
ered in Appendix B. Random 3D Euclidean froths are con-
structed from 2D random shell networks in Appendix C.

II. RECURSION PROCEDURE FOR 2D FROTHS

This section is concerned with two-dimensional shell-
structured-inflatable froths. The recursion procedure is de-
rived here for froths and it is extended to networks with a
vertex coordination larger than three in Appendix A. Figure
1 shows an example of a froth with the various shells indi-
cated by bold lines and labeled by the indext ~the shell
t50 corresponding to the boundary of the germ cell!. Let
V1(2)
(t) be the number of vertices going out from shell (t)

towards shell (t11) @towards shell (t21)#. Let F (t) be the
number of cells in the layer between shells (t) and (t11). If
^n& is the average number of edges per cell in layer (t), the
edges in this layer are accounted for, as follows:

^n&F ~ t !5V2
~ t !12V1

~ t !12V2
~ t11!1V1

~ t11! . ~2.1!

In the right-hand side of this equation, the quantity
V2
(t)1V1

(t) is the total number of vertices constituting shell
(t), the quantityV2

(t11)1V1
(t11) is the total number of verti-

ces constituting shell (t11) whereas the quantity
V2
(t11)1V1

(t) gives the number of vertices~counted twice!
bounding the edges separating the cells comprised between
shells (t) and (t11). SinceV1

(t)5V2
(t11) andF (t)5V1

(t) , one
has the recursion equation

^n&V1
~ t !54V1

~ t !1V1
~ t11!1V2

~ t ! . ~2.2!

The matrix form of this recursion equation is

S V1
~ t11!

V2
~ t11!D 5S s 21

1 0 D S V1
~ t !

V2
~ t !D , ~2.3!

with the recursion parameters5^n&24. Equation~2.3! gen-
erates recursively the whole froth from the germ cell. In
general, the quantitŷn& changes from one layer to the next.
Hence the recursion parameter should depend on the distance
t. However, the value of̂n& associated to a layer of cells at
a distancet from the germ cell must, ast→`, converge to
the average value for any cell in the froth. Moreover, since
the choice of the germ cell is completely arbitrary, the quan-
tity ^n& associated with layer (t) is an average. Conse-
quently, the recursion parameter can be taken as an effective
quantity which is independent oft, and the quantitŷn& is
then the average number of edges per cell in the froth. The
initial conditions in Eq. ~2.3! are then V2

(0)50 and
V1
(0)5^n&.
The recursion procedure described in Eq.~2.3! appears

also in other instances, such as in the computation by deci-
mation of the electronic energy spectrum in the 1D tight-
binding model@4#. In this case, the variablesV(t) are re-
placed by the components of the electronic wave functions in
the basis of the site states, and the recursion parameters is
the ~dimensionless! energy of the electron.

Equation ~2.3! gives an immediate link between the
shell-structured-inflatable froths and the logistic map.
Indeed, from the relationssV1

(t)5V1
(t11)1V1

(t21) , sV1
(t11)

5V1
(t12)1V1

(t) , andsV1
(t21)5V1

(t)1V1
(t22) , one gets

s1V1
~ t !5V1

~ t12!1V1
~ t22! , ~2.4!

with

s15s222, ~2.5!

and a similar relation forV2 . Iterating j times, one obtains

sjV1
~ t !5V1

~ t12 j !1V1
~ t22 j ! , ~2.6!

with

sj115sj
222, ~2.7!

ands05s. Equation~2.7! is the trace map of the recursion
matrix in Eq. ~2.3!. It is a logistic map@3#, with two ~un-
stable! fixed pointss*52 and s*521. The logistic map
decomposes the axis of values of the recursion parameters
into two different regions. Any point in the regionusu.2 is
sent towards infinity by the successive iterations of the logis-
tic map. By contrast, ifusu,2, successive iterations of the
logistic map remain all within this interval. The existence of
these two intervals classifies all 2D shell-structured-
inflatable froths. This classification corresponds to the curva-
ture of the manifold which the froth tiles. The space is ellip-
tic for usu,2, hyperbolic forusu.2, and Euclidean for the
fixed point s5s*52. The map relates successive numbers
V(t) of vertices per shell. Iterations of Eq.~2.3! generate

FIG. 1. Schematic picture of a 2D shell-structured-inflatable
froth.
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trajectories in the plane (t,V1), starting from the initial
pointsV1

(21)5V2
(0)50 andV1

(0)5^n&.
When usu,2, the trajectories are given by the equation

V1
~ t !5V1

~0!
sin@w~ t11!#

sinw
, ~2.8!

with cos(w)5s/2. Equation~2.8! shows that all trajectories
are finite and end at the pointV1

(T)50, with T5(p/w)21.
Moreover, the values ofV1

(t) are bounded by the quantity
V1
(0)/sin(w). These finite and bounded trajectories are de-

scribing the iterative tiling of the compact manifolds with a
positive curvature. Indeed, consider a froth tiling the surface
of a sphere. Suppose that the north pole of the sphere is
located in the germ cell; the successive shells are the paral-
lels on the sphere. The number of vertices per shell increases
between the north pole and the equator, then decreases from
the equator to the south pole where the tiling ends. This is
precisely the behavior described by Eq.~2.8!. The quantity
T115p/w is the topological distance between both poles.
Here are a few examples of regular froths withusu,2. To
s521 corresponds a froth made with four triangles, i.e., the
surface of a tetrahedron. The recursion parameters50 cor-
responds to a froth made with six squares, i.e., the surface of
a cube. Finallys51 is associated with a froth which is the
surface of a dodecahedron.

In the caseusu.2, the solution of Eq.~2.3! is

V1
~ t !5V1

~0!
sinh@w~ t11!#

sinhw
, ~2.9!

with cosh(w)5s/2. Equation~2.9! shows that, contrary to
the previous case, the values ofV1

(t) increase exponentially
with t. All trajectories are now infinite and unbounded in the
plane (t,V1). They are therefore describing the iterative til-
ing of the noncompact manifolds with a negative curvature.

At the fixed points5s*52, Eq. ~2.3! has the solution

V1
~ t !5~ t11!V1

~0! . ~2.10!

The values ofV1
(t) have again no upper bound, but here they

are increasing linearly witht as expected for the Euclidean
plane by simple geometrical considerations. The fixed point
s*52 describes shell-structured-inflatable froths covering
the Euclidean plane with cells with six edges on average. An
example of such froths is the hexagonal tiling.

We have shown that the logistic map provides, in a natu-
ral way, the topological classification of the tilings of the
manifolds without anya priori knowledge of their Gaussian
curvature. In 2D this classification by the logistic map is
identical to that provided by the combination of the Gauss-
Bonnet theorem@5# and Euler’s equation

E Ek da5
p

3
~62^n&!F5

p

3
~22s!F. ~2.11!

Here,k is the Gaussian curvature and it is integrated over the
whole manifold.F is the total number of cells in the mani-
fold. The tiled manifold is hyperbolic, Euclidean, or elliptic
when the integrated curvature is negative, zero, or positive,
i.e., when the recursion parameters is larger, equal to, or

smaller than two. However, the logistic map is also appli-
cable in 3D where there is no Gauss-Bonnet theorem and the
Euler equation is homogeneous@6#.

III. RECURSION PROCEDURE FOR 3D FROTHS

This section extends the analysis of the previous one to
3D shell-structured-inflatable froths. The froth hasV verti-
ces,E edges,F faces, andC polyhedra. Every shell of the
3D froth is built up from two superposed different two-
dimensional froths, and looks like a corrugated sphere. This
is the same as in 2D, where a shell can be regarded as the
superposition of two 1D froths, one whose vertices are con-
nected to the ‘‘incoming’’ edges from shell (t21) to shell
(t), and the other whose vertices are connected to the ‘‘out-
going’’ edges pointing from shell (t) towards shell (t11).
Similarly, every spherical shell (t) of the 3D froth is built-up
of the superposition of two 2D froths, one whose edges are
connected to the ‘‘incoming’’ faces of layer (t21), and the
other whose edges are connected to the ‘‘outgoing’’ faces of
layer (t). Let V1(2)

(t) andE1(2)
(t) be the numbers of vertices

and edges of shell (t), bounding the cells of layer (t) be-
tween shells (t) and (t11) @layer (t21) between shells
(t) and (t21), respectively#, which are making the ‘‘outgo-
ing’’ ~‘‘incoming’’ ! froth. LetF1(2)

(t) be the number of faces
of such froths. Both froths are characterized by the identities

V1~2 !
~ t ! 2E1~2 !

~ t ! 1F1~2 !
~ t ! 52 ~3.1!

~Euler’s formula! and

3V1~2 !
~ t ! 52E1~2 !

~ t ! ~3.2!

~since in both 2D froths, any vertex is connected by three
edges and any edge is bounded by two vertices!.

One has the following relations between two successive
shells:

V2
~ t11!5V1

~ t ! ,

E2
~ t11!5E1

~ t ! , ~3.3!

F2
~ t11!5F1

~ t ! .

Shell (t) is a spherical surface tiled by a network withFN
(t)

faces. One has

FN
~ t11!5^ f &F1

~ t !22E1
~ t !2FN

~ t ! . ~3.4!

In this equation,̂ f & is the average number of faces per cell
in the layer (t).

Since the whole shell (t) is a polyhedron, both Euler’s
formula and the incidence relations are applicable between
the number of edgesEN

(t) , the number of verticesVN
(t) , and

the number of facesFN
(t) of the shell polyhedron, namely,

VN
~ t !2EN

~ t !1FN
~ t !52 ~3.5!

and

^n&NFN
~ t !52EN

~ t ! . ~3.6!
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Here ^n&N is the average number of edges per face of the
shell polyhedron. Since it is an elliptic tiling with a vertex
coordination>3, then ^n&N,6. The shell network is the
superposition of two 2D froths, it has therefore three-
connected verticesV1(2) corresponding to the ‘‘outgoing’’
~‘‘incoming’’ ! froth, and also four-connected verticesV3 at
the intersections between the edges of the two 2D froths. The
three types of vertices are represented in Fig. 2. Figure 3
shows the shell network in the particular case of the ‘‘Kelvin
froth’’ @7,8#, and indicates a three-connected vertex and a
four-connected vertex.

The total number of verticesVN
(t) on shell (t) is the sum of

all three- and four-connected vertices, i.e.,

VN
~ t !5V1

~ t !1V2
~ t !1V3

~ t ! . ~3.7!

The total number of edgesEN
(t) on shell (t) satisfies the equa-

tion

2EN
~ t !53V1

~ t !13V2
~ t !14V3

~ t ! . ~3.8!

Using Eqs.~3.5!, ~3.6!, and~3.8!, one obtains

VN
~ t !521

1

2 S 12
2

^n&N
D ~3V1

~ t !13V2
~ t !14V3

~ t !!. ~3.9!

Combining Eqs.~3.7! and ~3.9!, it is possible to express the
variableV3

(t) in terms of the variablesV1
(t) andV2

(t) alone as

2V3
~ t !5

4^n&N
42^n&N

2~V1
~ t !1V2

~ t !!S 62^n&N
42^n&N

D , ~3.10!

which, with Eqs.~3.6! and ~3.8!, yields

FN
~ t !5

82~V1
~ t !1V2

~ t !!

42^n&N
. ~3.11!

Putting Eq.~3.11! into Eq. ~3.4!, we obtain, with the help of
Eqs.~3.1!-~3.3!, the following relation:

V1
~ t11!5 1

2 @~^ f &26!~^n&N24!24#V1
~ t !2V2

~ t !

12@81^ f &~^n&N24!#. ~3.12!

Finally, by shifting the variablesV1(2) as

Ṽ1~2 !
~ t ! 5V1~2 !

~ t ! 24S 81^ f &~^n&N24!

82~^ f &26!~^n&N24! D , ~3.13!

one obtains the recursion equation

sṼ1
~ t !5Ṽ1

~ t11!1Ṽ1
~ t21! , ~3.14!

with the recursion parameter

s5 1
2 @~^ f &26!~^n&N24!24#. ~3.15!

This recursion equation has the same matrix form as in the
2D case

S Ṽ1
~ t11!

Ṽ2
~ t11!D 5S s 21

1 0 D S Ṽ1
~ t !

Ṽ2
~ t !D . ~3.16!

As in the 2D casê f & and^n&N can be supposed to be inde-
pendent of the distancet. The variation of the 3D recursion
parameters @the trace of the transfer matrix in Eq.~3.16!# is
described by the logistic map~2.7!, as in the 2D case. Con-
sequently, the classification of the 3D shell-structured-
inflatable froths is the same as in 2D.

Elliptic shell-structured-inflatable froths are associated
with usu,2. They are tiling iteratively the 3D compact mani-
folds with a positive curvature. Indeed, the corresponding
solution of Eq.~3.16! is finite and bounded in the (t,V) plane

V1
~ t !5A sin~wt1B!12S 81^ f &~^n&N24!

22s D , ~3.17!

with cos(w)5s/2. The coefficientsA andB can be deduced
from the initial conditionsV1

(0)52(^ f &22) andV1
(21)50.

Hyperbolic shell-structured-inflatable froths are associ-
ated withusu.2. They are tiling iteratively 3D noncompact
manifolds with a negative curvature. Indeed, the correspond-
ing solution of Eq.~3.16! is unbounded in the (t,V) plane

FIG. 2. Any 3D shell (t) is tiled with a network generated by
the intersection of the faces coming to and going away from its
surface. This shell-network has four-connected verticesV3

(t) ~with
all four edges belonging to the shell network! and three-connected
verticesV1(2)

(t) ~with three edges belonging to the shell network and
the last one going away from it!.

FIG. 3. An example of 3D shell-structured-inflatable froth, the
Kelvin froth. A portion of the shell network is brought out by hatch-
eries.
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V1
~ t !5A sinh~wt1B!12S 81^ f &~^n&N24!

22s D , ~3.18!

with cosh(w)5s/2. As previously, the coefficientsA andB
can be determined from the initial conditions.

For s522 the solution reads

V1
~ t !5~21! t~At1B!1

81^ f &~^n&N24!

2
, ~3.19!

with A andB deducible from the initial conditions.
The solution of Eq.~3.16! associated to the fixed point

s5s*52 is

V1
~ t !5~ t11!$V1

~0!1t@81^ f &~^n&N24!#%. ~3.20!

The quadratic dependence int is the one expected from
simple geometrical reasoning for a tiling of the 3D Euclidean
space.

As in 2D, the logistic map gives a natural description of
the tilings of the three-dimensional manifolds without the
need of anya priori information on their curvature. Conse-
quently, the logistic map is able to characterize curved mani-
folds even when the Gauss-Bonnet formula is not applicable
@9,10#. The generation of tilings of the curved manifold by
the recursion procedure has therefore a wider applicability
than the Gauss-Bonnet formula.

IV. EXAMPLES OF 3D
SHELL-STRUCTURED-INFLATABLE FROTHS

In order to illustrate the previous considerations, we give
some known examples of 3D froths and show that they fit
our classification. All are monotiled~i.e., constituted of to-
pologically identical cells!, apart from the last example.

The only regular elliptic froths in 3D are$3,3,3% ~packing
of tetrahedra!, $4,3,3% ~packing of cubes!, and$5,3,3% ~pack-
ing of dodecahedra! @11#. They correspond tos521,
s522, ands51, respectively. Note that the cases50 does
not correspond to any regular froth. Indeed, the only solution
s50 of Eq.~3.15! with ^ f & and^n&N,6 both being integers
is ^ f &510, ^n&N55, which is not regular.

Consider Eq.~3.15! in the Euclidean case~i.e., s52).
This equation gives a relationship between the average num-
ber of neighbors per cell (^ f &) in the 3D froth and the aver-
age number of edges per cell (^n&N) in the 2D spherical shell
network

^ f &561
8

^n&N24
. ~4.1!

This equation gives the condition for the Euclidean space
filling by a shell-structured-inflatable froth. Note that, from
Eq. ~4.1!, the minimal number of faces per cell of such a
froth is ten, sincê n&N,6. It is known that the minimal
number of neighbors per cell is eight for an Euclidean froth.
Thus an Euclidean froth with 8<^n&N,10 necessarily con-
tains local topological defects of the kind discussed in Ap-
pendix B..

Recall that the shell network is the superposition of two
elliptic 2D froths, the ‘‘incoming’’ and the ‘‘outgoing’’
froths. The pattern of edges constituting the shell network

sets the value of̂ n&N . Therefore Eq.~4.1! allows us to
construct systematically 3D Euclidean shell-structured-
inflatable froths starting from the 2D shell networks.

The simplest 2D froth is the hexagonal lattice. The ex-
amples displayed in Figs. 4, 5, and 6 illustrate the construc-
tion of ordered, monotiled 3D froths from a shell network
generated by different superpositions@cf. Figs. 4~a!, 5~a!, and
6~a!# of two hexagonal lattices. Figures 4~b! and 4~c! show
two 3D unit cells constructed from the network@4~a!# ~see
also @12#!. The cell @4~b!# is topologically equivalent to
Kelvin’s a tetrakaidecahedron@7,8# ~it builds up the Kelvin
froth shown in Fig. 3!, and the cell@4~c!#, to its twisted
variant@13#. Both structures havêf &514 and^n&N55, i.e.,
s50 Eq. ~3.15!. They are indeed Euclidean space fillers.

Figure 5~a! shows part of a shell network with five-sided
faces, generated by the superposition of two ‘‘squeezed’’
hexagonal lattices~see also@12#!. Figures 5~b! and 5~c! show
the 3D unit cells constructed from the network@5~a!#. These
cells have again̂f &514. The unit cell@5~b!# is topologically
equivalent to theb tetrakaidecahedron~the Williams cell
@14#!. It has^n&N55, and is an Euclidean space filler accord-
ing to Eq.~3.15!.

The unit cell of Fig. 5~c! is topologically equivalent to the
14-sided cell~the Goldberg cell@15#! which occurs, among
others, in clathrates@8#, in t.c.p. structures@16,17#, and in the
minimal froth of Weaire and Phelan@18#. The space can be
filled layer by layer with Goldberg cells only. The layers
~Fig. 5! are Euclidean and the network@5~a!# is the same as
that of the Williams space filler. However, successive layers
are more and more distorted@19#, as shown in Fig. 5~d!. This
distortion, which stretches the network in one direction and
compresses it in the other, strongly suggests that we are fill-
ing the hyperbolic 3D space with a stack of Euclidean layers.
It is possible to prove this contention by filling the space
shell by shell instead of layer by layer. When doing so, one
finds that most of the shell network is composed of penta-
gons~12 out of 14 in each 3D cell!, but a finite density of
hexagons~2 out of 14 in each 3D cell! is needed in order to
close a shell. Thuŝn&N.5 which, according to Eq.~3.15!,
impliess.2. Hence the 3D manifold tiled by Goldberg cells
is hyperbolic.

With another intersection of the two ‘‘squeezed’’ hexago-
nal lattices, one generates the shell network shown in Fig.
6~a!. The corresponding 3D unit cell@6~b!# has ^ f &516
~eight quadrilaterals, six hexagons, and two octagons! and
^n&N54.8. As far as we know, this unit cell is a monotile
Euclidean space filler.

Figure 7 shows an example of an Euclidean shell-
structured-inflatable froth made of two different cells@8#.
The shell network@7~a!# also has two different tiles. The
associated 3D unit cell@7~b!# has^ f &512.

Any Euclidean shell-structured-inflatable froth made with
topologically identical cells can be constructed from a shell
network generated by superposition of two hexagonal lat-
tices. The construction of 3D disordered froths from 2D dis-
ordered shell networks is discussed in Appendix C.

Although a construction of 3D froths layer by layer has
been given in@12#, it must be emphasized that our approach,
combining spherical shells with the logistic map, is more
general and provides a unifying way to deal with 3D space-
filling structures, whether regular or not, whatever the curva-
ture of the manifold which they are tiling.
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V. BOUNDS ON TOPOLOGICAL PROPERTIES
OF NATURAL CELLULAR SYSTEMS

AND T.C.P. STRUCTURES

The average number (^n&) of edges per face of a 3D froth
is in general different from the average number of edges per
face in the shell-network (^n&N). For example, the froths in
Fig. 4 and 5~b! have ^n&N55 and ^n&55.14, the froth in
Fig. 6 has^n&N54.8 and^n&55.25 and the froth in Fig. 7
has^n&N55.33 and̂ n&55.

The value of̂ n& is related to the average number of faces
per 3D cell by

^ f &5
12

62^n&
. ~5.1!

It is interesting to study the competition between Eq.~5.1!
and the Euclidean space-filling condition given by Eq.~4.1!.
These two relationŝf &(^n&N) ~labeled ‘‘space filling’’! and
^ f &(^n&) ~labeled ‘‘3D cell’’! are plotted in Fig. 8. They
meet at the point (̂n&* ,^ f &* ) given by

~^n&* ,^ f &* !5S 1012A7
3 D , ~5.2!

It is only when the equalitŷn&5^n&N5^n&* ~which corre-
sponds tô f &*513.29•••) is satisfied that an arbitrary cell
has the freedom to adhere to a preexisting shell by any subset
of its faces, without adjustment. This freedom grants, there-
fore, a larger number of possibilities for building up a froth
and its maximizes the orientational entropy per cell. Indeed,
Eq. ~5.1! is a constraint on any single 3D cell, whereas Eq.
~4.1! is a constraint on the set of 3D cells in a layer. When
^n&5^n&N5^n&* , one of the two constraints is automati-
cally satisfied by the other and the orientational entropy is
increased@20#.

Note that the valuêf &*513.29••• falls within the range
of several already known bounds. It is consistent with the
values 13.2 and 13.33••• resulting from the decurving of the
dodecahedral packing with 14- and 18-sided cells or 14- and
16-sided cells, respectively@21#. Kusner@22# has shown that
a single cell with minimal interfaces in a froth which is lo-

FIG. 4. The two 3D space-filling unit cells constructed from the
shell network ~a!. The cell ~b! is topologically equivalent to
Kelvin’s a tetrakaidecahedron and the cell~c! to its twisted variant.
Both have 14 faces. FIG. 5. The two 3D space-filling unit cells constructed from the

shell network ~a! generated by the superposition of two
‘‘squeezed’’ hexagonal lattices. The cell~b! is topologically equiva-
lent to the b tetrakaidecahedron. The cell~c! is topologically
equivalent to the Goldberg cell.~d! shows the distortion of the 2D
cells in the successive shell networks resulting from filling with
Euclidean layers of Goldberg cells a space which is hyperbolic.
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cally Euclidean or hyperbolic cannot have less than 13.39
faces on average. It is also known that the minimal number
of faces per cell of a periodic, monotiled froth is 14. Weaire
and Phelan have recently given an example of froth with
^ f &513.5 ~the so-calledA15 phase! which minimizes the
total interfacial area@18# ~see also@23#!.

Natural froths minimize their free energy
@~configurational energy!2~temperature!3~entropy!#. With
the bounds given above, this condition is realized when the
value of^ f & is between 13.29••• and 13.5~or 14 for periodic

monotiled froths!. The lower bound corresponds to configu-
rations with a maximal orientational entropy, whereas the
upper bound corresponds to configurations with a minimal
interfacial energy.

There exists a class of natural structures, the Frank and
Kasper phases~or the larger class of the t.c.p. structures
@16,17#!, for which ^ f & falls within these bounds. These
structures are periodic and made of 12-, 14-, 15-, and 16-
sided cells whose faces are either pentagons or hexagons. It
can be verified that some of them fulfil the condition of
Euclidean space filling given by Eq.~4.1!. We can therefore
assume that the t.c.p. structures are Euclidean shell-
structured-inflatable froths. Then their shell network is a pe-
riodic tiling made of pentagons and hexagons only. Let the
2D unit cell of the shell network consist off (5) pentagons
and f (6) hexagons, belonging toN* polyhedra within the
layer between the two subsequent shells. The number of
polyhedra in the 3D unit cell is a multiple ofN* . The aver-
age number of edges per face in the shell network is

^n&N5
6 f ~6!15 f ~5!

f ~6!1 f ~5! . ~5.3!

Substituting into Eq.~4.1!, one obtains

^ f &5
20f ~6!114f ~5!

2 f ~6!1 f ~5! . ~5.4!

The number of polyhedra in the 3D unit cell can be calcu-
lated with the help of the numbers of faces of the ‘‘outgo-
ing’’ ( f1) and ‘‘incoming’’ ( f2) froths in the unit cell of the
shell network. These numbers coincide with the numbers of
polyhedra in the layers above (f1) and below (f2) the shell
which have one or more faces belonging to the 2D unit cell.
In the limit of large shell networks, one has the relation
v1(2).2 f1(2) , with v1 ~respectively,v2) counting the

FIG. 6. The 3D space-filling unit cell~b! ~which has 16 faces!
resulting from the shell network~a! generated by the superposition
of two ‘‘squeezed’’ hexagonal lattices.

FIG. 7. Example of a 3D periodic shell-structured-inflatable
froth ~with ^ f &512) whose unit cell has two different elementary
cells. ~a! Shell network.~b! 3D unit cell.

FIG. 8. The average number^ f & of faces per cell in a froth
plotted as a function of the average number^n&N of edges per 2D
cell in the shell network@Eq. ~4.1!, curve labeled ‘‘space filling’’#
and of the average number^n& of edges per face in the froth@Eq.
~5.1!, curve labeled ‘‘3D’’#. The abscissan represents botĥn&N
and ^n&.
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number of three-connected vertices in the 2D unit cell which
belong to the ‘‘outgoing’’~respectively, ‘‘incoming’’! froth.
Equation~3.10! can then be written in terms of the quantities
associated with the 2D unit cell only

f11 f25v3S ^n&N24

62^n&N
D ~5.5!

(v3 counts the number of four-connected vertices in the 2D
unit cell!. On the other hand, since the 3D system is periodic,
one hasf11 f252N* on average. Therefore Eq.~5.5! can
be written as

N*5
v3

2 S 112
f ~6!

f ~5!D . ~5.6!

If one puts into Eq.~5.4! the simplest combinations of inte-
gersf (5) and f (6) which are such that̂f & falls within the two
bounds 13.29••• and 13.5, one retrieves the average number
of faces of the 3D unit cell of all experimentally known
t.c.p., which are listed in Table I.@The table gives all the
possible combinations (f (5), f (6)) up to f (6)54 and, for
f (6)>4, only those corresponding to known natural struc-
tures.# Also given are the corresponding values ofN* , ob-
tained from Eq.~5.6!. These values ofN* are exactly equal
to the sum of the lowest noncongruent numbers of 16-(p),
15-(q), 14-(r ), and 12-sided polyhedra (x) in the structural
formula of the corresponding t.c.p.@17#. The table presents
also several simple combinations (f (6), f (5)) which corre-
spond to structures not~yet! observed~they are indicated by
blanks in the last column!. Notably, combinations~2,23! and
~2,25!••• may be good candidates for the t.c.p. structures yet
to be observed. On the other hand, combinations~2,19!,
~3,28!, ~3,29!, and~4,39! may be too distorted to qualify as
t.c.p. structures. They may be realized with atoms of very
different sizes. Note finally that when̂f & is represented as a
function of the ratiof (5)/ f (6), the structures in Table I tend to
gather into distinct groups. This may indicate either the
existence of unfavorable configurations or structural
mode locking into the simplest t.c.p. structures
(A15, Z,s, . . . ,C15). All these facts strongly suggest that
the t.c.p. are shell-structured-inflatable froths.

VI. CONCLUSION

In this paper we have introduced a way to study froths
which emphasizes their shell structure. We have studied an
important subclass of shell-structured froths, i.e., those
which can be generated in a recursive way according to an
inflationary procedure. For 2D froths~and networks with any
coordination number! and 3D froths we have found that this
recursive procedure is described by the logistic map. This
map allows for a natural differentiation between froths tiling
elliptic, hyperbolic, or Euclidean manifolds, without anya
priori imposed curvature condition. In particular, the logistic
map is able to characterize 3D curved manifolds, thereby
providing a way to define the curvature from topological
considerations when the Gauss-Bonnet theorem is not appli-
cable. The logistic map in the 3D case enables us to recover
known space-filling configurations, and also to suggest other
ones. It is clear that the approach using the logistic map is
very powerful, since classification of the 3D space-filling
configurations is reduced to the study of the 2D tilings of the

~elliptic! shell surface. As an example of the power and gen-
erality of this approach, we have been able to retrieve the
topological properties of all experimentally known t.c.p.
structures by studying the tiling of the shell surface by pen-
tagons and hexagons.
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APPENDIX A: INFLATION OF TWO-DIMENSIONAL
z-VALENT NETWORKS WITH z>4

The generalization of Eq.~2.3! in the description of the
2D shell-structured-inflatable froths with coordination num-
berz>4 is as follows. Every shell has (z21) different types
of vertices. Extending the notation of Sec. II, the various
types of vertices are labeled byVa

(t), the number of vertices
belonging to shell (t) from which a50,1, . . . ,z22, ~re-
spectively,z222a! edges are pointing towards the shell
(t11) @respectively, shell (t21)#. Every vertexVa

(t) adds
a cells between shells (t) and (t11). The total number of
cellsF (t) between the two shells is

F ~ t !5 (
a50

z22

aVa
~ t !5 (

a50

z22

~z2a22!Va
~ t11! . ~A1!

Let ^n& denote the average number of edges per cell in the
layer (t). If one sums over all cells in this layer, one obtains

^n&F ~ t !5 (
a50

z22

~a11!Va
~ t !1 (

a50

z22

~z2a21!Va
~ t11! . ~A2!

Since

a115S 11
1

z22Da1S 1

z22D ~z2a22! ~A3!

and

z2a215S 11
1

z22D ~z2a22!1S 1

z22Da, ~A4!

one has

^n&F ~ t !5S 11
1

z22D (a50

z22

aVa
~ t !1S 1

z22D (a50

z22

~z2a22!Va
~ t !

1S 1

z22D (a50

z22

aVa
~ t11!1S 11

1

z22D
3 (

a50

z22

~z2a22!Va
~ t11!

5S 11
1

z22DF ~ t !1S 1

z22DF ~ t21!1S 1

z22DF ~ t11!

1S 11
1

z22DF ~ t !. ~A5!
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One obtains finally the recursion relation

@^n&~z22!22~z21!#F ~ t !5F ~ t11!1F ~ t21!. ~A6!

The matrix form of this recursion relation is the same as
for z53 @Eq. ~2.3!#, with recursion parameters5

^n&(z22)22(z21). The initial conditions are F (1)

5(z22)^n& andF (0)51.
Euclidean tilings are associated with the fixed point

s*52, i.e., to the equation

^n&5
2z

z22
. ~A7!

The only regular solutions@z and^n& integers# of this equa-
tion are ~6,3! ~tiling by triangles!, ~4,4! ~tiling by squares!,
and ~3,6! ~tiling by hexagons! @~dual of ~6,3!#.

APPENDIX B: NONINFLATABLE FROTHS

1. Noninflatable 2D froths

Some 2D shell-structured froths cannot be constructed ac-
cording to the recursion procedure of Eq.~2.3!. These froths
have local inclusions which are topological defects in the
recursion procedure. An inclusion in a layer is a cell with
neighboring cells in this layer and only in one of the two
neighboring layers. Topological defects fall in two classes:
vertex decorations@Figs. 9~a! and 9~b!# and edge decorations
@Fig. 9~c!#. In all cases the inclusion is on the1 side of the
shell (t).

Defects can be eliminated by removing one or more of the
edges and their surrounding vertices. A vertex-decoration de-
fect is then replaced by an ordinary vertex@Fig. 10~a!#. An
edge-decoration defect is then replaced by edges on the shell
@Fig. 10~b!#.

The removal of one edge reduces by one unit the number
of faces in the layer. This operation corresponds to the trans-

TABLE I. Average number of faceŝf & and~minimal! number of elements in the 3D unit cellN* of all
the t.c.p. structures known experimentally~labeled in the last column! and of the hypothetical t.c.p. structures
~indicated by a blank in the last column!. The integersp, q, r , andx indicate, respectively, the proportions
of 3D cells with 16, 15, 14, and 12 faces present in the 3D unit cell.

Number of Number of ^ f & N* p q r x t.c.p.
hexagons pentagons

1 10 13.333 33 3 1 0 0 2 C15; C14
1 11 13.384 62 13 2 2 2 7 ps; K7Cs6; m; M
1 12 13.428 57 7 0 2 2 3 Z
2 24 13.428 57 14 1 2 5 6 P; d
1 13 13.466 67 15 0 2 8 5 s; H
1 14 13.5 4 0 0 3 1 A15
2 19 13.304 35 23
2 21 13.36 25 6 2 2 15 C
2 23 13.407 41 27
2 25 13.448 28 29
2 27 13.483 87 31
3 28 13.294 12 17
3 29 13.314 29 35
3 31 13.351 35 37 10 2 2 23 X
3 32 13.368 42 19 4 2 2 11 I
3 34 13.4 20
3 35 13.414 63 41
3 37 13.441 86 43
3 38 13.454 55 11 0 2 5 4 J
3 40 13.478 26 23
3 41 13.489 36 47
4 39 13.319 15 47
4 41 13.346 94 49
4 43 13.372 55 51
4 45 13.396 23 53 8 6 12 27 R
4 47 13.418 18 55 7 4 19 25 K*
7 90 13.461 54 52 0 4 13 9 F
9 92 13.345 45 55 16 2 2 35 Mg4Zn7
11 142 13.463 41 41 7 4 19 25 K
13 136 13.358 02 81 20 6 6 49 T
13 136 13.358 02 81 23 0 9 49 SM
13 160 13.440 86 93 6 10 40 37 n
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formations E→E23,V→V22,F→F21. Consequently,
since ^n&52E/F, the average number of edges per cell
changes as

^n&85^n&1
1

F21
~^n&26!. ~B1!

The recursion parameters5^n&24 changes therefore as

s85s1
1

F21
~s22!. ~B2!

One sees that the fixed points*52 remains unchanged by
the defect elimination. Moreover, elliptic froths become
more elliptic ~i.e., ^n&8,^n&,6) whereas hyperbolic froths
become more hyperbolic~i.e., ^n&8.^n@6). Thus the Eu-
clidean, hyperbolic, or elliptic character of the manifold tiled

by the froth is not modified by the defect elimination~it is
indeed given by the Euler-Poincare´ characteristic which is a
topological invariant!.

2. Noninflatable 3D froths

By analogy with the 2D case, one can define a topological
distancer between two cellsA andB as the minimal number
of faces that must be crossed by a path that connectsA and
B. A 3D shell-structured-inflatable froth is defined by the
following two conditions:

~1! For any set of cells equidistant from a germ cell, there
exists a closed non-self-intersecting surface that cuts these
cells and no others.

~2! Any cell at the distancet from the germ cell is the
neighbor of at least one cell at the distancet11.

Shells are closed surfaces tiled by the faces of cells; they
bound layers of equidistant cells. It is possible to connect
two adjacent shells (t) and (t11) through a set of faces,
each with one edge on shell (t) and one on shell (t11).
Shell (t) separates the whole froth into an inner froth, con-
stituted of cells at a distancer<t, and an outer froth, with
cells at a distancer.t.

There are local defects which violate rules~1! or ~2!.
These noninflatable configurations in the 3D froths are
shown in Fig. 11. These are particular examples of the three
general classes of the 3D topological defects: vertex, edge,
and face decoration. As in 2D these noninflatable configura-
tion can be eliminated. Defects elimination is made by re-
moving one~or more! face~s!, together with the surrounding
edges and vertices. The removal of one face withn edges

FIG. 9. Local topological defects in the 2D recursion procedure.
~a! and ~b! are examples of vertex decorations whereas~c! is an
example of edge decoration. The indext denotes the topological
distance.

FIG. 10. Schematic representations of the elimination of a 2D
local topological defect.~a! Vertex decoration.~b! Edge decoration.

FIG. 11. Local topological defects in the 3D recursion proce-
dure, ~a! is a vertex decoration defect,~b! is an edge decoration
defect, and~c! is a face decoration defect. The indext denotes the
topological distance.
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reduces by one unit the total numberC of cells. This opera-
tion corresponds to the transformationC→C21 and
F→F212n. Consequently, sincêf &52F/C, the average
number of faces per cell changes as

^ f &85^ f &1
1

C21
@^ f &22~n11!#. ~B3!

In contrast to the 2D case, this transformation depends on the
parametern. This is not surprising since it is well known that
in the 3D case the value of^ f & is not directly related to the
curvature of the manifold tiled by the froth.

APPENDIX C: RANDOM 3D EUCLIDEAN FROTHS
FROM 2D RANDOM SHELL NETWORKS

Equation ~4.1! implies that a 3D random froth can be
constructed from the superposition of two 2D random froths.
To study this general case it is useful to rewrite Eq.~4.1! in
term of the numberp3 of intersections of edges of the in-
coming froth by edges of the outgoing froth and vice versa.
For a given shell (t) this quantity is equal to

p35
2V3

~ t !

E1
~ t !1E2

~ t ! 5
2

3

2V3
~ t !

~V1
~ t !1V2

~ t !!
, ~C1!

where we used the identity 3V1(2)(t)52E1(2)
(t) . Using Eq.

~3.10! it is possible to expressp3 in terms of^n&N . One has

p35
2

3 S 62^n&N
^n&N24

2
4^n&N

~^n&N24!~V1
~ t !1V2

~ t !! D . ~C2!

When the number of network cells is much larger than unity,
one hasp35(2/3)(62^n&N)/(^n&N24). Substituting into
~4.1!, one obtains

^ f &51016p3. ~C3!

In principle, in random froths,p3 can take any value
between zero and infinity~but only between 2/3 and 1 for the
periodic monotiled froths!. For example,p35` corresponds
to a froth made with layers of infinitely long bricks disposed,
layer by layer, with orientation alternating by 90°. In this
case the network is a square lattice. The opposite limit
(p350) corresponds, for example, to a 3D froth made with
layers of large and small cells, when the ratio between the
cell sizes tends to infinity. In this case the network is the
result of the superposition of a froth with cells of large sizes
and a froth of small sizes and the probability of the intersec-
tion of edges of these two froths is vanishingly small.
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